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Dynamic educational systems require continuous evaluation of performance and efficiency to respond 
effectively to structural, managerial, and social changes. Educational organizations can be assessed based on 
their objectives and missions, as well as how efficiently they use available resources. This study employs 
multiplier Data Envelopment Analysis (DEA) models to examine computational and conceptual issues that arise 
when very small lower bounds are imposed on input and output weights. It is shown that the conventional 
single-stage DEA approach, particularly under weight restrictions, may generate efficiency targets with negative 
input values, which are theoretically and practically invalid. To address this limitation, a modified single-stage 
formulation inspired by the two-stage framework of Ali and Seiford is proposed, allowing for the simultaneous 
and consistent evaluation of radial and non-radial inefficiencies while preventing infeasible efficiency targets. 
An empirical application to non-profit schools in Fars Province demonstrates that arbitrarily small weight 
bounds can lead to misleading efficiency projections, whereas the proposed model produces more realistic and 
interpretable results, highlighting the need to revise standard single-stage DEA formulations when weight 
restrictions are applied in educational performance assessment. 
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1. Introduction* 

Educational systems, as one of the fundamental pillars of 
sustainable development, are continuously exposed to structural, 
economic, and social changes. Consequently, systematic 
performance and efficiency evaluation of such systems is 
indispensable. Any educational system or organization can be 
assessed based on its objectives, mission, and the extent to which 
it utilizes available resources and facilities efficiently. In this 
context, Data Envelopment Analysis (DEA) has emerged as a 
powerful non-parametric technique for evaluating the relative 
efficiency of decision-making units (DMUs) and has been widely 
applied in education, banking, industry, environmental studies, 
and sustainability analysis (Charnes et al., 1978; Banker et al., 
1984). 

In the field of education, DEA has been extensively used to 
evaluate the efficiency of schools, universities, and educational 
districts, allowing policymakers to identify best-performing 
institutions and sources of inefficiency (Bessent et al., 1982; 
Charnes et al., 1981; Ruggiero, 1996; Thanassoulis, 1996). These 
studies demonstrate that DEA is particularly suitable for 
educational evaluation due to the multi-input–multi-output 
nature of teaching and learning processes, where outcomes such 
as academic achievement, graduation rates, and quality 
indicators must be considered simultaneously. 

DEA models, particularly in their multiplier and envelopment 
forms, enable the simultaneous evaluation of multiple 
heterogeneous inputs and outputs without requiring an explicit 
specification of a production function. However, one of the main 
challenges associated with multiplier DEA models is the 
excessive flexibility of weights, which may lead to unrealistic or 
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extreme weight values and, consequently, reduce the 
discriminatory power of the model. This issue is especially 
critical in school efficiency studies, where unconstrained weights 
may ignore important educational inputs such as teacher 
experience or student background (Thanassoulis and Dunstan, 
1994; Johnes, 2006). To address this problem, various forms of 
weight restrictions have been introduced and extensively studied 
in the DEA literature (Podinovski, 1999; 2004; 2007; Cook and 
Zhu, 2008; Allen et al., 1997; Thanassoulis et al., 2004). 

In the conventional single-stage approach, multiplier DEA 
models impose a very small positive lower bound 𝜀 on all input 
and output weights. This lower bound is chosen arbitrarily. The 
aim is to evaluate radial efficiency as the main objective while 
also considering non-radial inefficiencies as a secondary 
objective. However, Ali and Seiford (1993) showed that using 
extremely small values of 𝜀 can cause serious computational 
problems and numerical inaccuracies because of the limited 
precision of computer-based optimization. To address this issue, 
they proposed a two-stage optimization approach. In this 
method, radial efficiency is evaluated in the first stage, and non-
radial improvements are considered in the second stage. 

Despite the advantages of the two-stage approach, its 
application to DEA models with weight restrictions introduces 
additional conceptual and practical challenges. Podinovski 
(2007) showed that applying the standard second-stage 
optimization directly to weight-restricted DEA models may result 
in efficiency targets with negative input values, which are 
generally meaningless from an economic and managerial 
perspective. Such issues are particularly problematic in 
educational settings, where negative values for resources such as 
teaching hours or expenditures are infeasible (Johnes and Yu, 
2008). To resolve this issue, a modified second-stage 
optimization procedure was proposed that prevents the 
occurrence of such infeasible targets. 

In recent years, DEA has been increasingly applied not only to 
static efficiency evaluation but also to dynamic productivity 
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analysis, sustainability assessment, and sustainable development 
studies in education. For example, the Malmquist productivity 
index has been used to examine productivity changes in schools 
and universities over time (Rashidi et al., 2014; Worthington, 
2001). Moreover, DEA-based frameworks integrating 
undesirable outputs and social indicators have been employed to 
evaluate the broader performance of educational institutions 
within sustainable development contexts (Hosseini et al., 2018; 
Rashidi et al., 2025). 

Furthermore, hybrid approaches combining DEA with multi-
criteria decision-making methods, such as the Balanced 
Scorecard and the Analytic Network Process, have enabled more 
comprehensive performance evaluations in educational systems 
(Fanati Rashidi, 2020; Kao and Hung, 2008). Several studies have 
also examined issues related to returns to scale, congestion, and 
weight control in school efficiency analysis, highlighting the 
importance of methodological rigor when DEA models are 
applied to real-world educational data (Ruggiero, 2004; Asil and 
Rashidi, 2015). 

Nevertheless, the use of arbitrarily small lower bounds on 
weights in multiplier DEA models with weight restrictions may 
still lead to theoretically invalid results, even in the absence of 
numerical inaccuracies. This phenomenon can occur under both 
constant returns to scale (CRS) and variable returns to scale 
(VRS) assumptions (Charnes et al., 1978; Banker et al., 1984). 
This indicates that the problem is not merely computational but 
rather rooted in the theoretical formulation of the single-stage 
DEA model itself. 

Accordingly, the main objective of this study is to investigate 
the potential shortcomings of the standard single-stage DEA 
approach in the presence of weight restrictions and to propose a 
theoretical modification of the single-stage formulation. The 
proposed modification leads to a new single-stage DEA model—
presented in both multiplier and envelopment forms—that is 
theoretically sound for compactly representing two objectives: 
the evaluation of radial and non-radial inefficiency of a DMU. It is 
shown that the modified model avoids generating negative input 
targets and yields more meaningful efficiency projections. 

Finally, the efficiency of non-profit schools in Fars Province is 
evaluated using weight-restricted DEA models. The results show 
that small lower bounds on weights may lead to the identification 
of efficient targets with negative inputs, whereas the modified 
model successfully overcomes this issue and provides more 
realistic efficiency assessments. 

2. Production technology with weight restrictions 

The bidirectional relationship between weight restrictions 
and production trade-offs provides a fundamental basis for 
configuring weight restrictions. In general, our objective is to 
reduce the computational errors caused by using extremely small 
lower bounds on input and output weights in the multiplier DEA 
model. 

First, it is necessary to formulate the reciprocal relationship 
between weight restrictions and the production trade-off 
process, to examine the concept of production technology 
derived from DEA models with weight restrictions, and to 
demonstrate that the single-stage formulation of DEA models 
may lead to a misleading interpretation of efficiency targets. 

Consider a decision-making unit (DMU) (𝑋𝑜, 𝑌𝑜), where 𝑥 ∈
 𝑅𝑚 and 𝑦 ∈  𝑅𝑠, evaluated using the CRS multiplier DEA model 
with K weight restrictions. The vectors u and v denote the output 
and input weights, respectively, and the weight restrictions are 
defined as: 

 
𝑉ᵀ𝑃𝑡  − 𝑈ᵀ𝑄𝑡  ≥  0, 𝑡 =  1, 2, … , 𝐾                                    (1) 

 
The right-hand side of these equations is zero, representing 

homogeneous weight restrictions (Podinovski, 2004). The 

components of the vectors 𝑃𝑡∈ 𝑅𝑚 and 𝑄𝑡∈ 𝑅𝑠 may be positive, 
negative, or zero. 

Consider the output-oriented CRS multiplier DEA model 
incorporating weight restrictions. The radial efficiency of DMU₀ 
is the reciprocal of the optimal value of the following linear 
programming problem: 

 
ɳ∗ = Min    𝑉ᵀ𝑋𝑜 
𝑈ᵀ𝑌𝑜 = 1 
𝑉ᵀ𝑋𝑗  − 𝑈ᵀ𝑌𝑗  ≥  0         𝑗 = 1, … , 𝑛                                                                         (2) 

𝑉ᵀ𝑃𝑡  − 𝑈ᵀ𝑄𝑡  ≥  0         𝑡 = 1, … , 𝑘 
U, V  ≥  0          

 
The dual form of this model is expressed as follows, where 

the dual constraints are equalities represented by non-negative 
vectors d and e: 

 
ɳ∗ = Max     ɳ                                                            (3) 

∑ λ𝑗𝑋𝑗

𝑛

𝑗=1

+  ∑ π𝑡𝑃𝑡

𝑘

𝑡=1

+ 𝑑 = 𝑋𝑜 

∑ λ𝑗𝑌𝑗

𝑛

𝑗=1

+ ∑ π𝑡𝑄𝑡

𝑘

𝑡=1

− 𝑒 =  ɳ 𝑌𝑜 

𝜋, 𝑑, 𝑒 , λ  ≥  0  , ɳ    𝑓𝑟𝑒𝑒   

 
Clearly, the weight restrictions in the multiplier model (2) 

generate additional dual terms in model (3). Podinovski (2004) 
referred to these terms as production trade-offs. Model (3) 
projects DMU₀ onto the CRS efficiency frontier. 

 
Definition 1. (Podinovski, 2004). The CRS technology with 
production trade-offs, denoted by T_CRS−TO, is defined as the set 
of all DMUs (x, y) ∈ 𝑅𝑚 ×  𝑅𝑠 for which there exist intensity 
vectors λ ∈  𝑅𝑛, π ∈  𝑅𝑘, and non-negative slack vectors d ∈ 
 𝑅𝑚  and e ∈  𝑅𝑠such that: 

 
∑ λ𝑗𝑋𝑗

𝑛
𝑗=1 + ∑ π𝑡𝑃𝑡

𝑘
𝑡=1 + 𝑑 = 𝑋𝑜                                                         (4) 

∑ λ𝑗𝑌𝑗
𝑛
𝑗=1 +  ∑ π𝑡𝑄𝑡

𝑘
𝑡=1 − 𝑒 =  𝑌𝑜  

 
Equation (4) describes an arbitrary DMU in the CRS 

technology. The terms involving π𝑡  represent adjustments to this 
DMU through production trade-offs (𝑃𝑡 , 𝑄𝑡). Accordingly, the 
DMU is modified by increasing inputs by d and reducing outputs 
by e. If all inputs and outputs remain non-negative, the DMU is 
considered a member of the technology T_CRS−TO. 

The VRS technology is defined similarly by adding the 
constraint ∑ λ𝑗

𝑛
𝑗=1 = 1. 

If weight restrictions are inconsistent, feasibility of models 
(2) and (3) cannot be guaranteed. Podinovski et al. (2013, 2015) 
proposed analytical and computational methods for examining 
the consistency of weight restrictions. In this study, weight 
restrictions are assumed to be consistent. 

3. Modified single-stage model 

Based on Definition 1, we propose a simple modification to 
the single-stage development of multiplier DEA models to 
overcome the issues highlighted earlier. The modified model 
identifies inefficient units on the frontier of the technologies 
T_CRS−TO and T_VRS−TO, ensuring non-negativity of target 
inputs and outputs. 

The output-oriented modified single-stage model for 
identifying an efficient target within T_CRS−TO is formulated as: 

 
ɳ∗ = Max     ∑ ξ𝑖

𝑚
𝑖=1 + ∑ ξ𝑟

𝑠
𝑟=1                                                                                 (5) 

∑ λ𝑗𝑋𝑗
𝑛
𝑗=1 + ∑ π𝑡𝑃𝑡

𝑘
𝑡=1 + 𝑑 = 𝑋𝑜-  ξ𝑖 

∑ λ𝑗𝑌𝑗
𝑛
𝑗=1 +  ∑ π𝑡𝑄𝑡

𝑘
𝑡=1 − 𝑒 =  ɳ 𝑌𝑜 + ξ𝑟 

𝜋, 𝑑, 𝑒 , λ  ≥  0  , ɳ    𝑓𝑟𝑒𝑒   

 
The full formulation is: 
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𝑋𝑜-  ξ𝑖 ≥ 0 
ɳ 𝑌𝑜 + ξ𝑟 ≥ 0                                          (6) 

 
Let (λ*, π*, d*, ξ*, ς*, η*) be an optimal solution to model (6). 

The efficient target DMU is defined as: 
 

(X*, Y*) = (X₀ − ξ*, η*Y₀ + ς*)                                                             (7) 

 
It follows that (X*, Y*) satisfies the defining constraints with e 

= 0 and therefore belongs to the technology T_CRS−TO. Hence, 
the following result holds. 

 
Theorem 1. The DMU (X*, Y*) is efficient in the technology 
T_CRS−TO. 

By associating dual variables v, u, and w with constraints (6), 
the dual formulation of the modified single-stage model can be 
expressed as: 

 
Min     ( 𝑉𝑇 + 𝑊𝑇 ) 𝑋𝑜                                                                           (8) 
𝑈ᵀ𝑌𝑜 = 1 
𝑉ᵀ𝑋𝑗  − 𝑈ᵀ𝑌𝑗  ≥  0         𝑗 = 1, … , 𝑛                 

𝑉ᵀ𝑃𝑡  − 𝑈ᵀ𝑄𝑡  ≥  0         𝑡 = 1, … , 𝑘 
𝑣𝑖   + 𝑤𝑖  ≥ ε     𝑖 = 1, . . , 𝑚      
𝑢𝑟 ≥ ε             r=1, …, s 
𝑉, 𝑊 ≥   0 

4. Efficiency evaluation of non-profit schools using modified 
models 

In this section, a set of activities and characteristics of 
educational units are considered as input and output indicators. 
The models introduced in the previous section are employed to 
evaluate these units. 

Statistical data were collected and are presented in Table 1. 
These data are used as inputs and outputs and analyzed using the 
previously discussed models. The results obtained from solving 
Models (2) and (3) are reported in Tables 2 and 3, respectively. 

 
Table 1  
Input and output data of schools. 

DMU 
Teaching 
Experience 
(X1) 

Academic 
Degree 
Level (X2) 

Cost 
(Million 
Tomans) 
(X3) 

Primary 
GPA (X4) 

Middle 
School 
GPA 
(Y1) 

Admission 
Rate (Y2) 

A 18 1.29 242.22 18.55 19.66 0.92 
B 18 1.35 223.46 17.97 19.14 0.78 
C 21 1.50 196.95 19.86 18.03 0.98 
D 21 1.25 188.25 17.50 16.30 0.77 
E 18 1.35 179.59 18.80 16.34 1.00 
F 14 1.63 110.92 17.90 16.38 0.85 
G 20 1.50 101.90 18.44 18.82 1.00 
H 20 1.40 95.74 19.28 17.58 0.99 
I 23 1.20 94.79 17.34 17.52 0.79 
J 17 1.21 85.10 18.50 16.67 0.97 
K 19 1.46 84.96 17.30 17.70 0.75 
L 20 0.998 84.02 18.30 17.53 0.84 
M 19 1.36 83.53 17.56 17.44 0.83 
N 14 1.16 79.41 17.79 16.24 0.75 
O 14 1.37 77.84 18.76 18.17 1.00 
P 16 1.58 75.08 18.04 15.79 0.81 
Q 12 1.33 73.16 19.00 19.00 1.00 
R 19 1.28 68.15 19.54 18.55 0.99 
S 17 1.47 64.48 17.20 18.08 0.84 
T 18 1.30 63.51 19.25 17.23 0.88 
U 16 1.67 63.33 19.75 16.23 1.00 
V 17 1.17 59.97 18.54 17.26 1.00 
W 19 1.09 59.23 16.47 18.01 0.89 
X 19 1.28 58.97 18.93 15.12 0.93 
Y 16 1.25 58.42 17.58 14.58 0.77 
Z 16 1.15 50.58 16.09 17.28 0.89 

 
The production trade-offs are defined using two vectors, P 

and Q. Vector P is defined as (0, 1/2, -1, 1/6) and vector Q is 
defined as (1/8, 0). 

Fig. 1 illustrates the efficiency scores of non-profit schools 
evaluated using the weight-restricted DEA Model (2), 
highlighting the relative performance of decision-making units 
under the proposed framework. 

Based on the solutions of the above models, it can be 
observed that decision-making units (Z, W, V, Q, and L) are 

identified as convergently efficient by both Models (2). Moreover, 
DMUs (O and G) are also found to be efficient under both models. 
As observed, the models produce closely comparable results in 
identifying efficient units. 

 
Table 2 
Input and output weights and efficiency scores using model (2). 

DMU Efficiency 
Output 
weight 
U1 

Output 
weight 
U2 

Input 
weight 
V1 

Input 
weight 
V2 

Input 
weight 
V3 

Input 
weight 
V4 

A 1.0007 0.0508 — 0.0091 0.0451 0.0140 — 
B 1.0011 0.0522 — 0.0093 0.0463 0.0139 — 
C 1.0972 0.0613 1.0204 0.0002 0.0539 — — 
D 1.1470 0.0072 — 0.0002 0.0670 0.6409 — 
E 1.0153 0.0570 1.0101 0.0017 0.0523 — — 
F 1.1175 0.0564 1.0309 0.0040 0.0592 — — 
G 1.0000 0.0570 1.0000 0.0017 0.0523 — — 
H 1.0535 0.0573 1.0101 0.0002 0.0533 — — 
I 1.0822 0.0615 1.0861 0.0002 0.0624 — — 
J 1.0287 0.0076 1.0309 0.0017 0.0539 — — 
K 1.0591 — 1.0101 1.0101 0.0501 — — 
L 1.0000 — 1.0102 1.0102 0.0508 — — 
M 1.0881 — — 0.0157 0.0067 — — 
N 1.0842 — — 0.0037 0.0505 — — 
O 1.0000 — — 0.0042 0.0620 — — 
P 1.1883 — — 0.0516 — — — 
Q 1.0000 — — 0.0818 — — — 
R 1.0616 0.0526 0.9179 0.0035 0.0495 0.0030 — 
S 1.0121 0.0049 1.0000 0.0099 0.0490 0.0091 — 
T 1.1517 0.0553 1.0000 0.0156 0.0396 0.0111 — 
U 1.0168 0.0580 1.0752 0.0252 0.0576 0.0080 — 
V 1.0000 — 1.0709 0.0252 — 0.0056 — 
W 1.0000 0.0555 — 0.0059 — 0.0018 — 
X 1.0850 0.0120 — 0.0059 — 0.0185 — 
Y 1.2144 0.0578 — 0.0059 — 0.0131 — 
Z 1.0000 — — 0.0059 — 0.0203 — 

4. Results 

Identifying productivity targets for inefficient DMUs in CRS 
and VRS DEA models can be examined as a two-stage process. 
According to Ali and Seiford (1993), the first stage identifies the 
radial input- or output-oriented projection of the DMU under 
evaluation onto the technology frontier. 

The objective of the second stage is to eliminate any 
remaining non-radial inefficiencies in the radial target DMU. This 
is achieved by maximizing the sum of input and output slacks. 

Conventional single-stage multiplier DEA models impose a 
theoretically negligible lower bound (0 < ε) on input and output 
weights. Their dual envelopment models simultaneously evaluate 
radial input or output efficiency as the primary objective and 
consider input and output slacks as a secondary objective 
associated with observed activities. 

 
Table 3 
Values of d and e and efficiency scores of schools using model (3) 

DMU 
d1 
(Teaching 
Experience) 

d2 
(Academic 
Degree 
Level) 

d3 (Cost, 
Million 
Tomans) 

d4 
(Primary 
GPA) 

e1 
(Middle 
School 
GPA) 

e2 
(Admission 
Rate) 

A  0.0374 173.85   0.0725 
B  0.1407 157.50   0.1828 
C   101.77  0.2875  
D 0.8117 0.0918 125.31   0.0416 
E  0.0807 108.37 1.318   
F   42.78 0.7787  0.3909 
G  0.0524 10.42    
H   32.43    
I 2.9963      
J  0.0385 24.75    
K  0.0308 22.27    
L   19.76    
M  0.1886 7.01    
N   7.17    
O       
P  0.3434     
Q       
R     0.451  
S  0.1128 1.24  0.3217 0.0716 
T    0.1128  0.0011 
U  3.1661  0.3217   
V       
W       
X 1.3635  2.073    
Y      0.073 
Z       
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Fig. 1. Efficiency scores of non-profit schools obtained from the weight-restricted DEA Model (2). 
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