Optimal proportional-integral controller design for statistic VAR compensator using particle swarm optimization algorithm

E. Baëta *, F. Ollennu

College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Abstract

In a power system, the most crucial problem is maintaining system stability margins. The main important reasons for occurring stability problem in the system is due to the fault occurs in the power system. In this study, the effect of the statistic VAR compensator (SVC) on the voltage stability margin is investigated by a Proportional Integral (PI) controller. SVC is a parallel kind FACTS device that is used in the power system primarily for the target of voltage and reactive power control. The application of this paper is concerned with is the damping of sways of a synchronous generator and control of the power system voltage. The PI controller parameters of the SVC are of basic importance in ensuring it performs sufficiently. This article introduces a systematic method for PI controller design of an SVC using particle swarm optimization (PSO) algorithm. The PSO-PI controller sketch results in enhanced stability margin of a single machine connected to an infinite bus bar with the SVC system over the classical PI controller or non-controller.

Keywords

SVC, PSO, Generator, PI controller, Voltage profile

Digital Object Identifier (DOI)

https://doi.org/10.21833/AEEE.2019.08.004

Article history

Received 20 March 2019, Received in revised form 15 July 2019, Accepted 16 July 2019

Full text

DownloadAvailable in PDF
Portable Document Format

How to cite

Baëta E and Ollennu F (2019). Optimal proportional-integral controller design for statistic VAR compensator using particle swarm optimization algorithm. Annals of Electrical and Electronic Engineering, 2(8): 18-23

References (33)

  1. Astrom K and Hagglung T (2006). Advanced PID control. The Instrumentation, Systems and Automation Society, Pittsburgh, USA.   [Google Scholar]
  2. Astrom KJ and Wittenmark B (1995). Adaptive controls. 2nd Edition, Addison Wesley, Boston, USA.   [Google Scholar]
  3. Bingul Z (2004). A new PID tuning technique using differential evolution for unstable and integrating processes with time delay. In the International Conference on Neural Information Processing, Springer, Siem Reap, Cambodia: 254-260. https://doi.org/10.1007/978-3-540-30499-9_38   [Google Scholar]
  4. Chang WD (2007). A multi-crossover genetic approach to multivariable PID controllers tuning. Expert Systems with Applications, 33(3): 620-626. https://doi.org/10.1016/j.eswa.2006.06.003   [Google Scholar]
  5. Chang WD (2009). PID control for chaotic synchronization using particle swarm optimization. Chaos, Solitons and Fractals, 39(2): 910-917. https://doi.org/10.1016/j.chaos.2007.01.064   [Google Scholar]
  6. Chen CS and Hsu CT (1995). The simplified linear model derivation of power systems with static var compensators to improve system damping. In the IEEE/KTH Stockholm Power Tech Conference, Stockholm, Sweden: 370-375.   [Google Scholar]
  7. CIGRE (1986). Task force no. 2 on static var compensators. Working Group 38-01; International Council on Large Electric Systems, Paris, France.   [Google Scholar]
  8. Coelho SL and Bernert ADL (2009). PID control design for chaotic synchronization using a tribes optimization approach. Chaos, Solitons and Fractals, 42(1): 634-640. https://doi.org/10.1016/j.chaos.2009.01.032   [Google Scholar]
  9. Crowe J, Chen GR, Ferdous R, Greenwood DR, Grimble MJ, Huang HP, and Lee TH (2005). PID control: New identification and design methods. Springer, Berlin, Germany.   [Google Scholar]
  10. Duan HB, Wang DB, and Yu XF (2006). Novel approach to nonlinear PID parameter optimization using ant colony optimization algorithm. Journal of Bionic Engineering, 3(2): 73-78. https://doi.org/10.1016/S1672-6529(06)60010-3   [Google Scholar]
  11. Fukuda T and Shibata T (1992). Theory and applications of neural networks for industrial control systems. IEEE Transactions on Industrial Electronics, 39(6): 472-489. https://doi.org/10.1109/41.170966   [Google Scholar]
  12. Gaing ZL (2004). A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transactions on Energy Conversion, 19(2): 384-391. https://doi.org/10.1109/TEC.2003.821821   [Google Scholar]
  13. Garg A and Agarwal SK (2011). Modeling and simulation of static VAR compensator for improvement of voltage stability in power system. International Journal of Electronics Communication and Computer Engineering, 2(2): 102-106.   [Google Scholar]
  14. Ghoshal SP (2004). Optimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation control. Electric Power Systems Research, 72(3): 203-212. https://doi.org/10.1016/j.epsr.2004.04.004   [Google Scholar]
  15. Hammad AE (1986). Analysis of power system stability enhancement by static var compensators. IEEE Transactions on Power Systems, 1(4): 222-227. https://doi.org/10.1109/TPWRS.1986.4335049   [Google Scholar]
  16. Iruthayarajan MW and Baskar S (2009). Evolutionary algorithms based design of multivariable PID controller. Expert Systems with applications, 36(5): 9159-9167. https://doi.org/10.1016/j.eswa.2008.12.033   [Google Scholar]
  17. Iruthayarajan MW and Baskar S (2010). Covariance matrix adaptation evolution strategy based design of centralized PID controller. Expert Systems with Applications, 37(8): 5775-5781. https://doi.org/10.1016/j.eswa.2010.02.031   [Google Scholar]
  18. Kano M and Ogawa M (2009). The state of art in advanced process control in Japan. In the 7th IFAC International Symposium on Advanced Control of Chemical Processes, Istanbul, Turkey. https://doi.org/10.3182/20090712-4-TR-2008.00005   [Google Scholar]
  19. Kennedy J and Eberhart R (1995). Particle swarm optimization: Proceedings. In the IEEE international conference on neural networks, IEEE Service Center, Piscataway, USA, 4: 1942-1948.   [Google Scholar]
  20. Lee CC (1990). Fuzzy logic in control systems: Fuzzy logic controller. II. IEEE Transactions on Systems, Man, and Cybernetics, 20(2): 419-435. https://doi.org/10.1109/21.52552   [Google Scholar]
  21. Menhas MI, Wang L, Fei M, and Pan H (2012). Comparative performance analysis of various binary coded PSO algorithms in multivariable PID controller design. Expert Systems with Applications, 39(4): 4390-4401. https://doi.org/10.1016/j.eswa.2011.09.152   [Google Scholar]
  22. Mukherjee V and Ghoshal SP (2007). Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electric Power Systems Research, 77(12): 1689-1698. https://doi.org/10.1016/j.epsr.2006.12.004   [Google Scholar]
  23. O'Dwyer A (2009). Handbook of PI and PID controller tuning rules. Imperial College Press, London, UK. https://doi.org/10.1142/p575   [Google Scholar]
  24. Ogata K (2002). Modern control engineering. 4th Edition, Prince Hall, Boston, USA.   [Google Scholar]
  25. Rahman H, Rahman F, and Rashid HO (2012). Stability improvement of power system by using SVC with PID controller. International Journal of Emerging Technology and Advanced Engineering (IJETAE), 2(7): 226-233.   [Google Scholar]
  26. Seborg DE, Mellichamp DA, Edgar TF, and Doyle III FJ (2010). Process dynamics and control. John Wiley and Sons, Hoboken, USA.   [Google Scholar]
  27. Shi Y and Eberhart R (1998). A modified particle swarm optimizer. In the 1998 IEEE International Conference on Evolutionary Computation Proceedings: IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), IEEE, Anchorage, USA: 69-73. https://doi.org/10.1109/ICEC.1998.699146   [Google Scholar]
  28. Trelea IC (2003). The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters, 85(6): 317-325. https://doi.org/10.1016/S0020-0190(02)00447-7   [Google Scholar]
  29. Visioli A (2006). Practical PID control. Springer Science and Business Media, Berlin, Germany.   [Google Scholar]
  30. Yousef AM (2004). Transient stability Enhancement of multi machine using Global deviation PSS. Journal of Engineering Sciences, Faculty of Engineering, Assiut University, 32(2): 665-677.   [Google Scholar]
  31. Zhang J, Zhuang J, and Du H (2009). Self-organizing genetic algorithm based tuning of PID controllers. Information Sciences, 179(7): 1007-1018. https://doi.org/10.1016/j.ins.2008.11.038   [Google Scholar]
  32. Ziegler JG and Nichols NB (1942). Optimum settings for automatic controllers. American Society of Mechanical Engineers, 64(8): 759–768.   [Google Scholar]
  33. Zuo W (1995). Multivariable adaptive control for a space station using genetic algorithms. IEE Proceedings-Control Theory and Applications, 142(2): 81-87. https://doi.org/10.1049/ip-cta:19951734   [Google Scholar]