On the Rucklidge time-delayed chaotic system for nonlinear double convection: Adaptive control, synchronization and LabVIEW implementation

N. Bernardara *, A. Lafaurie, F. I. Saad

Faculté des Sciences, Université de Nice Sophia Antipolis, parc Valrose, 06108 Nice, France

Abstract

There is great interest shown in the literature in the discovery of chaotic motion and oscillations in nonlinear dynamical systems arising in physics, chemistry, biology, and engineering. Chaotic systems have many important applications in science and engineering. This paper discusses the Rucklidge chaotic system for nonlinear double convection and time-delayed Rucklidge chaotic system. When the convection takes place in a fluid layer rotating uniformly about a vertical axis and in the limit of tall thin rolls, convection in an imposed vertical magnetic field and convection in a rotating fluid layer are both modeled by Rucklidge’s three-dimensional system of ordinary differential equations, which produces chaotic solutions. This paper starts with a detailed description of the Rucklidge’s nonlinear double convection system and the parameter values for which the Rucklidge system exhibits chaotic behavior. Next, an adaptive feedback controller is designed for the global chaos control of the time delayed Rucklidge chaotic system with unknown parameters. Furthermore, an adaptive feedback controller is designed for the global chaos synchronization of the identical Rucklidge chaotic system with its time-delayed Chaotic System. All the main results derived in this work are illustrated with MATLAB simulations. Finally, the circuit design of the novel A 3-D chaotic system is implemented in LABVIEW to validate the theoretical chaotic model.

Keywords

Chaos, Chaos control, Chaos synchronization, Rucklidge system, Double convection, Fluid mechanics, Circuit simulation, LABVIEW implementation

Digital Object Identifier (DOI)

https://doi.org/10.21833/AEEE.2019.06.003

Article history

Received 3 February 2019, Received in revised form 5 May 2019, Accepted 7 May 2019

Full text

DownloadAvailable in PDF
Portable Document Format

How to cite

Bernardara N, Lafaurie A, and Saad FI (2019). On the Rucklidge time-delayed chaotic system for nonlinear double convection: Adaptive control, synchronization and LabVIEW implementation. Annals of Electrical and Electronic Engineering, 2(6): 10-19

References (42)

  1. Arneodo A, Coullet P, and Tresser C (1981). Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79(4): 573-579. https://doi.org/10.1007/BF01209312   [Google Scholar]
  2. Azar AT and Vaidyanathan S (2015). Chaos modeling and control systems design. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-319-13132-0   [Google Scholar]
  3. Behnia S, Afrang S, Akhshani A, and Mabhouti K (2013). A novel method for controlling chaos in external cavity semiconductor laser. Optik-International Journal for Light and Electron Optics, 124(8): 757-764. https://doi.org/10.1016/j.ijleo.2012.01.013   [Google Scholar]
  4. Cai G and Tan Z (2007). Chaos synchronization of a new chaotic system via nonlinear control. Journal of Uncertain Systems, 1(3): 235-240.   [Google Scholar]
  5. Chadli M and Zelinka I (2014). Chaos synchronization of unknown inputs Takagi–Sugeno fuzzy: Application to secure communications. Computers and Mathematics with Applications, 68(12): 2142-2147. https://doi.org/10.1016/j.camwa.2013.01.013   [Google Scholar]
  6. Chen G and Ueta T (1999). Yet another chaotic attractor. International Journal of Bifurcation and chaos, 9(7): 1465-1466. https://doi.org/10.1142/S0218127499001024   [Google Scholar]
  7. Huang WZ and Huang Y (2008). Chaos of a new class of Hopfield neural networks. Applied Mathematics and Computation, 206(1): 1-11. https://doi.org/10.1016/j.amc.2008.08.041   [Google Scholar]
  8. Islam MM and Murase K (2005). Chaotic dynamics of a behavior-based miniature mobile robot: Effects of environment and control structure. Neural Networks, 18(2): 123-144. https://doi.org/10.1016/j.neunet.2004.09.002   [Google Scholar]
  9. Jafari S and Sprott JC (2013). Simple chaotic flows with a line equilibrium. Chaos, Solitons and Fractals, 57: 79-84. https://doi.org/10.1016/j.chaos.2013.08.018   [Google Scholar]
  10. Khalil HK and Grizzle JW (2002). Nonlinear systems. 3rd Edition, Prentice Hall, Upper Saddle River, New Jersey, USA.   [Google Scholar]
  11. Kuo CL (2011). Design of a fuzzy sliding-mode synchronization controller for two different chaos systems. Computers and Mathematics with Applications, 61(8): 2090-2095. https://doi.org/10.1016/j.camwa.2010.08.080   [Google Scholar]
  12. Kyriazis M (1991). Applications of chaos theory to the molecular biology of aging. Experimental Gerontology, 26(6): 569-572. https://doi.org/10.1016/0531-5565(91)90074-V   [Google Scholar]
  13. Li D (2008). A three-scroll chaotic attractor. Physics Letters A, 372(4): 387-393. https://doi.org/10.1016/j.physleta.2007.07.045   [Google Scholar]
  14. Liu C, Liu T, Liu L, and Liu K (2004). A new chaotic attractor. Chaos, Solitons and Fractals, 22(5): 1031-1038. https://doi.org/10.1016/j.chaos.2004.02.060   [Google Scholar]
  15. Lorenz EN (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2): 130-141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2   [Google Scholar]
  16. Lü J and Chen G (2002). A new chaotic attractor coined. International Journal of Bifurcation and chaos, 12(3): 659-661. https://doi.org/10.1142/S0218127402004620   [Google Scholar]
  17. Matouk AE (2011). Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol–Duffing circuit. Communications in Nonlinear Science and Numerical Simulation, 16(2): 975-986. https://doi.org/10.1016/j.cnsns.2010.04.027   [Google Scholar]
  18. Pecora LM and Carroll TL (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8): 821-824. https://doi.org/10.1103/PhysRevLett.64.821   [Google Scholar]
  19. Pehlivan I, Moroz IM, and Vaidyanathan S (2014). Analysis, synchronization and circuit design of a novel butterfly attractor. Journal of Sound and Vibration, 333(20): 5077-5096. https://doi.org/10.1016/j.jsv.2014.05.025   [Google Scholar]
  20. Pham VT, Vaidyanathan S, Volos CK, and Jafari S (2015). Hidden attractors in a chaotic system with an exponential nonlinear term. The European Physical Journal Special Topics, 224(8): 1507-1517. https://doi.org/10.1140/epjst/e2015-02476-9   [Google Scholar]
  21. Pham VT, Volos C, Jafari S, Wang X, and Vaidyanathan S (2014). Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectronics and Advanced Materials, Rapid Communications, 8(11-12): 1157-1163.   [Google Scholar]
  22. Rasappan S and Vaidyanathan S (2012). Global chaos synchronization of WINDMI and Coullet chaotic systems by backstepping control. Far East Journal of Mathematical Sciences, 67(2): 265-287.   [Google Scholar]
  23. Rössler OE (1976). An equation for continuous chaos. Physics Letters A, 57(5): 397-398. https://doi.org/10.1016/0375-9601(76)90101-8   [Google Scholar]
  24. Rucklidge AM (1992). Chaos in models of double convection. Journal of Fluid Mechanics, 237: 209-229. https://doi.org/10.1017/S0022112092003392   [Google Scholar]
  25. Sahoo B and Poria S (2014). The chaos and control of a food chain model supplying additional food to top-predator. Chaos, Solitons and Fractals, 58: 52-64. https://doi.org/10.1016/j.chaos.2013.11.008   [Google Scholar]
  26. Sprott JC (1994). Some simple chaotic flows. Physical Review E, 50(2): R647-R650. https://doi.org/10.1103/PhysRevE.50.R647   [Google Scholar]
  27. Sun Y, Babovic V, and Chan ES (2010). Multi-step-ahead model error prediction using time-delay neural networks combined with chaos theory. Journal of Hydrology, 395(1-2): 109-116. https://doi.org/10.1016/j.jhydrol.2010.10.020   [Google Scholar]
  28. Sundarapandian V (2013). Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. Journal of Engineering Science and Technology Review, 6(4): 45-52. https://doi.org/10.25103/jestr.064.06   [Google Scholar]
  29. Sundarapandian V and Pehlivan I (2012). Analysis, control, synchronization, and circuit design of a novel chaotic system. Mathematical and Computer Modelling, 55(7-8): 1904-1915. https://doi.org/10.1016/j.mcm.2011.11.048   [Google Scholar]
  30. Tigan G and Opriş D (2008). Analysis of a 3D chaotic system. Chaos, Solitons and Fractals, 36(5): 1315-1319. https://doi.org/10.1016/j.chaos.2006.07.052   [Google Scholar]
  31. Tuwankotta JM (2006). Chaos in a coupled oscillators system with widely spaced frequencies and energy-preserving non-linearity. International Journal of Non-Linear Mechanics, 41(2): 180-191. https://doi.org/10.1016/j.ijnonlinmec.2005.02.007   [Google Scholar]
  32. Vaidyanathan S (2015a). Adaptive control of a chemical chaotic reactor. International Journal of PharmTech Research, 8(3): 377-382.   [Google Scholar]
  33. Vaidyanathan S (2015b). Synchronization of Tokamak systems with symmetric and magnetically confined plasma via adaptive control. International Journal of ChemTech Research, 8(6): 818-827.   [Google Scholar]
  34. Vaidyanathan S and Madhavan K (2013). Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. International Journal of Control Theory and Applications, 6(2): 121-137.   [Google Scholar]
  35. Vaidyanathan S and Rajagopal K (2011). Global chaos synchronization of Lü and Pan systems by adaptive nonlinear control. In the International Conference on Digital Image Processing and Information Technology. Springer, Berlin, Heidelberg, Germany: 193-202. https://doi.org/10.1007/978-3-642-24055-3_20   [Google Scholar]
  36. Vaidyanathan S and Rasappan S (2010). New results on the global chaos synchronization for Liu-Chen-Liu and Lü chaotic systems. In the International Conference on Power Electronics and Instrumentation Engineering. Springer, Berlin, Heidelberg, Germany: 20-27. https://doi.org/10.1007/978-3-642-15739-4_4   [Google Scholar]
  37. Vaidyanathan S and Sampath S (2011). Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. In the International Conference on Digital Image Processing and Information Technology. Springer, Berlin, Heidelberg, Germany: 156-164. https://doi.org/10.1007/978-3-642-24055-3_16   [Google Scholar]
  38. Vaidyanathan S and Volos C (2015). Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Archives of Control Sciences, 25(3): 333-353. https://doi.org/10.1515/acsc-2015-0022   [Google Scholar]
  39. Vaidyanathan S, Azar AT, Rajagopal K, and Alexander P (2015a). Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronisation via active control. International Journal of Modelling, Identification and Control, 23(3): 267-277. https://doi.org/10.1504/IJMIC.2015.069936   [Google Scholar]
  40. Vaidyanathan S, Pham VT, and Volos CK (2015b). A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. The European Physical Journal Special Topics, 224(8): 1575-1592. https://doi.org/10.1140/epjst/e2015-02481-0   [Google Scholar]
  41. Volos CK, Kyprianidis IM, and Stouboulos IN (2013). Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robotics and Autonomous Systems, 61(12): 1314-1322. https://doi.org/10.1016/j.robot.2013.08.004   [Google Scholar]
  42. Volos CK, Pham VT, Vaidyanathan S, Kyprianidis IM, and Stouboulos IN (2015). Synchronization phenomena in coupled colpitts circuits. Journal of Engineering Science and Technology Review, 8(2): 142-151. https://doi.org/10.25103/jestr.082.19   [Google Scholar]