
  
 
 

Annals of Electrical and Electronic Engineering, 2(5) 2019, Pages: 14-18 

 

 

 
 

 
 

Published by IASE 
 

Annals of Electrical and Electronic Engineering 
 

Journal homepage: www.aeeej.org 
 

 

14 

 

Charge management of plug-in electric vehicles for distribution 
transformer life enhancement  

J. R. da Silva *, P. M. de Oliveira, T. R. Lima, A. Z. de Freitas 

Electronic and Electrical Engineering Department, Nove de Julho University, São Paulo, SP, Brazil 

 

A R T I C L E  I N F O   A B S T R A C T  

Article history: 
Received 25 December 2018 
Received in revised form 
18 March 2019 
Accepted 22 March 2019 

A large population of power transformers along with other power system grid infrastructures have been in 
service for decades and considered to be in their final ageing stage. On the other hand, due to economy and 
business growth in our era, the electricity demand is growing rapidly. Therefore, transformers became the most 
critical devices in power system due to their long repair or replacement time. Plug-in electric vehicles (PEV) 
have been identified as an option that can reduce criteria pollutant and greenhouse gas emissions associated 
with the transportation sector. The electricity demand of one of these vehicles is comparable to that of a typical 
U.S. household and thus clustering of PEVs in a neighborhood might have adverse effects on the transformer 
and disruption of service. In this paper, the electricity demand of a neighborhood is modeled based on 
measured vehicle and household data. Then the threshold temperature is determined to program the charging 
process. In the proposed method, we used adaptive neuro-fuzzy inference system (ANFIS). Simulation results 
show that the ANFIS can accurately predict the spot hot of transformer. 

 

Keywords: 
Transformer 
Hot spot 
ANFIS 
PEV 

© 2019 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

1. Introduction* 

Growing volatility in petroleum prices, security concerns, and 
anthropogenic climate change is contributing to increased 
interest towards alternative vehicle technologies (Yilmaz, 2015; 
Lausenhammer et al., 2016). Moreover, with the proliferation of 
distributed renewable energy sources and the structure of the 
future utility grid, the smart-grid, and incorporation of 
bidirectional digital communication, the mass integration of the 
Electric Vehicles (EVs) and PEVs into the automobile market 
today seem both economically, environmentally beneficial, and 
technologically feasible (Rathore and Roy, 2016; Esmaili and 
Goldoust, 2015; Hajforoosh et al., 2015).  

Today, PEVs offer numerous advantages over conventional 
fuel based vehicles (Brooker and Qin, 2015), and given the 
potential large scale deployment of PEVs it is important that 
policy makers and electricity industry members understand the 
impact these vehicles will have on national electricity 
infrastructures (Dimitrova and Maréchal, 2015; Zhang and Xiong, 
2015). 

With increasing number of PEV connected to power systems 
for charging, there is a concern that existing distribution 
networks may become more heavily loaded than anticipated 
when they were designed. Low level of penetrations may result 
in little impact but, as the numbers increase, there could be a real 
possibility of local distribution networks being overwhelmed. 
Various studies have been carried out to evaluate whether the 
existing electricity network and generation capacity could accept 
the widespread adoption of PEVs (Clement-Nyns et al., 2009).  

In Gong et al. (2012), a transformer thermal model was used 
to estimate the hot-spot temperature given the knowledge of 
load ratio and ambient temperature. Main inputs to the model, 
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including residential load, ambient conditions, and vehicle 
parameters were taken from real data. The transformer 
insulation aging is mainly affected by the hot-spot temperature.  

In Rutherford and Yousefzadeh (2011), the impact of the 
mass insertion and electricity consumption of the EVs and PHEVs 
on distribution transformers is analyzed. Various simulations of 
Lithium-Ion batteries and transformer loss of life are developed. 
The simulation results from realistic load and real ambient 
temperature data show that power management of the EV 
battery charge profile can help manage the loss of life of the 
distribution transformer. Two potential approaches for charge 
scheduling of the EV batteries are described and investigated, 
and show that intelligent coordination between charging stations 
has promise for mitigating unnecessary loss-of-life due to EV 
charging. 

The aim of Geiles and Islam (2013) was to investigate the 
impact PEV charging imposes on local distribution transformer 
life in the presence of rooftop PV. The principal concept attained 
from this work is that PV generation coupled with PEV charging 
can delay and reduce the temperature rise of large oil immersed 
transformers. Furthermore, investigation finds that increased 
penetration of PEVs may have significant effect on distribution 
transformer loading. Therefore, utility companies must develop 
procedures or algorithms to identify these overload-susceptible 
transformers before they result in a high number of customer 
outages. 

In Razeghi et al. (2014), the electricity demand of a Southern 
California neighborhood comprised of ten households is modeled 
using a statistical Monte Carlo method based on measured 
electricity demand and power factors. Each household is then 
assumed to house a PEV. The electricity required to fully charge 
the vehicle’s battery is modeled based on real data of home 
arrival and departure times and driving patterns during a 
weekday, and vehicle type. The distribution transformer load 
serving this neighborhood is calculated, and a transformer 
thermal model is developed to track the hot spot temperature of 
the transformer for different cases and charging scenarios. 

http://www.science-gate.com/
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Qian et al. (2015) presented a detailed methodology to 
quantify the increase in power transformers’ loss of life as a 
result of the charging loads introduced to distribution systems by 
FEVs. Detailed mathematical models which take into account the 
stochastic nature of FEVs charging are developed and applied 
into the detailed transformer thermal model, which takes into 
consideration of all the major factors that determine transformer 
loss of life. Four FEV charging scenarios, named uncontrolled 
domestic charging, off-peak domestic charging, smart charging 
and uncontrolled public charging were simulated under various 
FEV penetration levels to investigate the effect of FEV charging 
load on the additional life consumption of power transformers.  

This paper is organized as follow. Section two describes the 
ANFIS. Section three investigates the PEV impacts on 
transformers. Section four presents some simulation results and 
finally section five concludes the paper. 

2. ANFIS 

The ANFIS represents a useful neural network approach for 
the solution of function approximation problems. Data driven 
procedures for the synthesis of ANFIS networks are typically 
based on clustering a training set of numerical samples of the 
unknown function to be approximated. Since introduction, ANFIS 
networks have been successfully applied to classification tasks, 
rule-based process controls, pattern recognition problems and 
the like. Here a fuzzy inference system comprises of the fuzzy 
model proposed by Takagi, Sugeno and Kang (Chiu, 1994) to 
formalize a systematic approach to generate fuzzy rules from an 
input output data set. 

For simplicity, it is assumed that the fuzzy inference system 
under consideration has two inputs and one output. The rule 
base contains two fuzzy if-then rules of Takagi and Sugeno 
(1983) type-2 as follows: 

 
𝐼𝑓 x is A and y is B then z is f(x, y) 

 
Where  A and B are the fuzzy sets in the antecedents and z =
f(x, y) is a crisp function in the consequent. f(x, y) is usually a 
polynomial for the input variables x and y. But it can also be any 
other function that can approximately describe the output of the 
system within the fuzzy region as specified by the antecedent. 
When f(x, y) is a constant, a zero order Sugeno fuzzy model is 
formed, which may be considered to be a special case of 
Mamdani fuzzy inference system where each rule consequent is 
specified by a fuzzy singleton. If f(x, y) is taken to be a first order 
polynomial a first order Takagi and Sugeno (1983) fuzzy model is 
formed. For a first order two-rule Takagi and Sugeno (1983) 
fuzzy inference system, the two rules may be stated as: 

 
Rule1: 𝐼𝑓 x is A1 and y is B1 then f1 = p1x + q1y + r1 
Rule2: 𝐼𝑓 x is A2 and y is B2 then f1 = p2x + q2y + r2 

 
Here type-3 fuzzy inference system proposed by Takagi and 

Sugeno is used (Buragohain and Mahanta, 2008). In this 
inference system the output of each rule is a linear combination 
of input variables added by a constant term. The final output is 
the weighted average of each rule’s output. The corresponding 
equivalent ANFIS structure is shown in Fig. 1. 

The individual layers of this ANFIS structure are described 
below: 

 
Layer 1: Every node i in this layer is adaptive with a node 
function 

 
Oi

1 = 𝜇𝐴𝑖
(𝑥)                 (2) 

 
where 𝑥 is the input to node i, 𝐴𝑖 the linguistic variable associated 
with this node function and 𝜇𝐴𝑖

 is the membership function of 𝐴𝑖. 

Usually 𝜇𝐴𝑖
(𝑥) is chosen as  

𝜇𝐴𝑖
(𝑥) =

1

1+[(
𝑥−𝑐𝑖

𝑎𝑖
⁄ )2]𝑏𝑖

                (3) 

 
or 

 

𝜇𝐴𝑖
(𝑥) = exp {−(

𝑥−𝑐𝑖

𝑎𝑖
)2}                                 (4) 

 
where 𝑥 is the input and {ai, bi, ci} is the premise parameter set. 
 
Layer 2: Each node in this layer is a fixed node which calculates 
the firing strength 𝑤𝑖  of a rule. The output of each node is the 
product of all the incoming signals to it and is given by 

 
𝑂𝑖

2 = 𝑤𝑖 = 𝜇𝐴𝑖
(𝑥) × 𝜇𝐵𝑖

(𝑥), i = 1,2                                (5) 

 
Layer 3: Every node in this layer is a fixed node. Each ith node 
calculates the ratio of the ith rule’s firing strength to the sum of 
firing strengths of all the rules. The output from the ith node is 
the normalized firing strength given by 

 

𝑂𝑖
3 = 𝑤 =

𝑤𝑖

𝑤1+𝑤2
, i = 1,2                (6) 

 
Layer 4: Every node in this layer is an adaptive node with a node 
function given by  

 
Oi

4 = 𝑤𝑖𝑓𝑖 = 𝑤𝑖(pix + qiy + ri)               (7) 
 
where 𝑤𝑖  is the output of Layer 3 and {pi, qi, ri} is the consequent 
parameter set. 
 
Layer 5: This layer comprises of only one fixed node that 
calculates the overall output as the summation of all incoming 
signals, i.e.: 
 

𝑂𝑖
5 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙output = ∑ 𝑤𝑖𝑓𝑖 =

∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
i               (8) 

 

 
Fig. 1. ANFIS structure. 

3. Impact of PEV charges on transformers 

For the transformer thermal model, load ratio and ambient 
temperature are the two inputs, and the hot-spot and top oil 
temperatures can be obtained correspondingly. For our case 
study, one year ambient temperature data of 2009 is available, 
and one year of base load ratio data is also available. For the load 
ratio that would be added by PEV charging, in this section we 
assume an even charging case. For the even charging case, we 
assume the charging rate for PEV is adjustable from 0 to 
maximum value of the charging rate, and the PEVs are charged 
from 7 pm to 6 am the next day with a constant charging rate. 
This case in practice would be difficult to realize without the use 
of a smart meter or other necessary technologies. However, this 
charge case was simulated to see the transformer thermal model 
response, and to see a nearly optimal charging as a bench mark. 
The specifications of test system are listed in Tables 1-3. 

One case of charging load comparison of the base load and 
the load with 6 PEVs (for 6 houses which share the same 
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transformer) with even charging is shown in Fig. 2. The time for 
this case is in summer, so the ambient temperature would be 
relatively high. The base load in night is lower than day time. The 
corresponding temperatures of top-oil and hot-spot are in Fig. 3. 
The response of top-oil temperature is much slower than hot-
spot temperature since the time constant of oil is much longer 

than winding. The hot-spot temperature was increased 
considerably due to the charging load from the 6 PEVs. 

Similarly, to see how different penetrations of PEV would 
affect the transformer hot-spot temperature, simulation of 2–6 
PEVs were carried out and compared together with the base load 
case. From the results presented in Fig. 4, higher penetration of 
PEVs would cause much higher hot-spot temperature.  

 
Table 1 
Test system specifications. 

No. Transformer  Consumer type No. consumers Peak load (KW) Transformer capacity (KVA) 

1-2-3-5 Residential 210 762.5 800 
4-6-7-8 Residential 240 745 800 

9-10-11-12-13 Residential 195 574 630 
22-23-24-25-26 Industry 1 1110 1250 
14-15-16-17-18 Commercial 15 740 800 

19-20- 21 Official 1 616.7 630 
 

Table 2 
Temperature information. 

Hour Temperature (Summer) Peak load (Summer) Temperature (Winter) Peak load (Winter) 

0-1 30 64 1 67 
1-2 29.5 60 0.5 63 
2-3 29.2 58 0.5 60 
3-4 29 56 0 59 
4-5 28.7 56 -0.7 59 
5-6 28.5 58 0 60 
6-7 28.2 64 0.9 74 
7-8 29.8 76 3.3 86 
8-9 31.8 87 5.5 85 

9-10 33.9 95 7 96 
10-11 35.9 99 8.7 96 
11-12 37.1 100 10.5 95 
12-13 38.4 99 11 95 
13-14 39.6 100 10.5 95 
14-15 40 100 9.5 93 
15-16 40 97 9 94 
16-17 39.6 96 8 99 
17-18 38.2 96 7.2 100 
18-19 36.8 93 7 100 
19-20 35.4 92 6 96 
20-21 33.9 92 5.5 91 
21-22 32.5 93 5.5 83 
22-23 31.7 87 4.5 73 
23-24 30.8 72 2 63 

 
Table 3 
PEV specifications. 

Efficiency (gas) Efficiency (Electric) Battery capacity  

(litre/km) (kWh/km) (kWh) Unit 
0.05 0.35 8 Minimum 
0.15 0.45 23 Maximum 

4. Simulation results 

In this paper an intelligent technique based on fuzzy rules is 
proposed to PEV charge programming. As mentioned, hot spot 
temperature has high effect on transformer life loss. Table 4 
presents the relation between transformer hot spot temperature 
and transformer life loss. It can be seen that in 98 degree, there is 
no life loss. But with increasing in temperature, the life loss rate 

increased rapidly. Therefore in this study we used ANFIS to 
predict the hot spot by using load and ambient temperature as 
effective input. 

The ANFIS is used to predict the hot spot temperature. Based 
on the predicted hot spot temperature, the central controller 
makes decision to permit new car charging or no. In this study 
we used 140 centigrade degree as threshold temperature. The 
ANFIS accuracy has vital role in the control system. Table 5 
represents ANFIS performance of different value of radii. It can 
be seen that there is no linear relation between radii and ANFIS 
performance. Therefore the value of radii must be selected by 
trial and error. The variation of ANFIS accuracy versus radii is 
plotted in Fig. 5. 

 

 
Fig. 2. Compare of base load to condition with 6 PEV even charging. 
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Table 4 
Relation between transformer hot spot temperature and transformer life loss. 

80 86 92 98 104 110 116 122 128 134 140 hot spot 
0.125 0.25 0.5 1 2 4 8 16 32 64 128 life loss rate 

 

 
Fig. 3. Compare of temperature responses of base load to condition with PEV even charging. 

 
a 

 
 

b 

 
Fig. 4. Comparison of (a) load and (b) temperature responses with different penetration of PEV. 

 
 

 
Fig. 5. Radii effect on ANFIS performance. 
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5. Conclusion 

The effect of uncontrolled electric vehicle charging on the 
distribution side is considerable and has the potential to affect 
the life of distribution components. This especially has significant 
impact on secondary-distribution transformers in residential 
zones. With smart grid implementation, assessment for reliability 
of feeder-level components becomes more crucial. In this paper 
we introduced and investigated the ANFIS application to optimal 
programming of PEV charging. In the proposed method we used 
ANFIS to predict the hot spot temperature. Simulation results 
show that the ANFIS can accurately predict the hot spot. 

 
Table 5 
ANFIS performance. 

MSE Radii 
0.076 0.1 

0.0031 0.2 
0.0095 0.3 
0.079 0.4 
0.054 0.5 
0.019 0.6 
0.026 0.7 
0.63 0.8 

0.099 0.9 
0.088 1 
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